TPTP Problem File: SET329-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET329-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Image alternate definition 4
% Version : [Qua92] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : IM2 [Qua92]
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 116 ( 41 unt; 8 nHn; 83 RR)
% Number of literals : 222 ( 49 equ; 101 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 50 ( 50 usr; 16 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. With a few exceptions (the
% problems that correspond to [BL+86] problems), the TPTP has
% retained the order in which Quaife presents the problems. The
% user may create an augmented version of this problem by adding
% all previously proved theorems (the ones that correspond to
% [BL+86] are easily identified and positioned using Quaife's
% naming scheme).
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%--------------------------------------------------------------------------
cnf(prove_image_alternate_defn4_1,negated_conjecture,
member(ordered_pair(x,y),xr) ).
cnf(prove_image_alternate_defn4_2,negated_conjecture,
member(ordered_pair(x,y),cross_product(universal_class,universal_class)) ).
cnf(prove_image_alternate_defn4_3,negated_conjecture,
member(x,z) ).
cnf(prove_image_alternate_defn4_4,negated_conjecture,
~ member(y,image(xr,z)) ).
%--------------------------------------------------------------------------