TPTP Problem File: SET174-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET174-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Corollary to absorbtion for intersection
% Version : [Qua92] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : D3 cor. [Qua92]
% Status : Unsatisfiable
% Rating : 0.80 v8.2.0, 0.90 v8.1.0, 0.95 v7.4.0, 0.94 v7.3.0, 0.92 v7.0.0, 0.93 v6.3.0, 0.91 v6.2.0, 1.00 v4.1.0, 0.92 v4.0.1, 0.91 v3.7.0, 0.80 v3.5.0, 0.91 v3.4.0, 1.00 v2.1.0
% Syntax : Number of clauses : 113 ( 38 unt; 8 nHn; 80 RR)
% Number of literals : 219 ( 50 equ; 101 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 49 ( 49 usr; 15 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. With a few exceptions (the
% problems that correspond to [BL+86] problems), the TPTP has
% retained the order in which Quaife presents the problems. The
% user may create an augmented version of this problem by adding
% all previously proved theorems (the ones that correspond to
% [BL+86] are easily identified and positioned using Quaife's
% naming scheme).
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%--------------------------------------------------------------------------
cnf(prove_corollary_to_absorbtion_for_intersection_1,negated_conjecture,
intersection(x,intersection(y,union(x,z))) != intersection(x,y) ).
%--------------------------------------------------------------------------