TPTP Problem File: SET169+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET169+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : Intersection distributes over union
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The intersection of X and (the union of Y and Z) is the union
% of (the intersection of X and Y) and (the intersection of X
% and Z).
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (70) [TS89]
% Status : Theorem
% Rating : 0.70 v9.0.0, 0.64 v8.2.0, 0.67 v8.1.0, 0.58 v7.5.0, 0.69 v7.4.0, 0.53 v7.3.0, 0.59 v7.2.0, 0.55 v7.1.0, 0.57 v7.0.0, 0.60 v6.4.0, 0.62 v6.3.0, 0.67 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.78 v5.2.0, 0.80 v5.1.0, 0.81 v5.0.0, 0.79 v4.1.0, 0.74 v4.0.0, 0.71 v3.7.0, 0.65 v3.5.0, 0.68 v3.3.0, 0.79 v3.2.0, 0.91 v3.1.0, 0.67 v2.7.0, 0.83 v2.6.0, 0.86 v2.5.0, 0.88 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 9 ( 4 unt; 0 def)
% Number of atoms : 19 ( 5 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 10 ( 0 ~; 1 |; 2 &)
% ( 6 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 22 ( 22 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom114,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(70),1833813)
fof(prove_intersection_distributes_over_union,conjecture,
! [B,C,D] : intersection(B,union(C,D)) = union(intersection(B,C),intersection(B,D)) ).
%--------------------------------------------------------------------------