TPTP Problem File: SET158-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET158-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Corollary to complement axiom
% Version : [Qua92] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : C6 [Quaife]
% Status : Unsatisfiable
% Rating : 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.05 v5.4.0, 0.10 v5.3.0, 0.06 v5.1.0, 0.12 v5.0.0, 0.14 v4.1.0, 0.15 v4.0.1, 0.18 v4.0.0, 0.27 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.08 v3.3.0, 0.07 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.1.0
% Syntax : Number of clauses : 115 ( 40 unt; 8 nHn; 82 RR)
% Number of literals : 221 ( 50 equ; 100 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 49 ( 49 usr; 15 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Not in [Qua92].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. With a few exceptions (the
% problems that correspond to [BL+86] problems), the TPTP has
% retained the order in which Quaife presents the problems. The
% user may create an augmented version of this problem by adding
% all previously proved theorems (the ones that correspond to
% [BL+86] are easily identified and positioned using Quaife's
% naming scheme).
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%--------------------------------------------------------------------------
cnf(prove_corollary_to_complement_axiom_1,negated_conjecture,
member(y,x) ).
cnf(prove_corollary_to_complement_axiom_2,negated_conjecture,
member(z,complement(x)) ).
cnf(prove_corollary_to_complement_axiom_3,negated_conjecture,
y = z ).
%--------------------------------------------------------------------------