TPTP Problem File: SET153-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET153-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Intersection with complement is null class
% Version : [Qua92] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : C3.1 [Qua92]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.25 v8.2.0, 0.29 v8.1.0, 0.26 v7.4.0, 0.29 v7.3.0, 0.33 v7.0.0, 0.40 v6.3.0, 0.36 v6.2.0, 0.30 v6.1.0, 0.29 v6.0.0, 0.40 v5.5.0, 0.65 v5.4.0, 0.60 v5.3.0, 0.67 v5.2.0, 0.62 v5.1.0, 0.65 v5.0.0, 0.57 v4.1.0, 0.62 v4.0.1, 0.64 v3.7.0, 0.40 v3.5.0, 0.45 v3.4.0, 0.50 v3.3.0, 0.57 v3.2.0, 0.38 v3.1.0, 0.36 v2.7.0, 0.42 v2.6.0, 0.33 v2.5.0, 0.45 v2.4.0, 0.25 v2.3.0, 0.12 v2.2.1, 0.33 v2.2.0, 0.00 v2.1.0
% Syntax : Number of clauses : 113 ( 38 unt; 8 nHn; 80 RR)
% Number of literals : 219 ( 50 equ; 101 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 47 ( 47 usr; 13 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. With a few exceptions (the
% problems that correspond to [BL+86] problems), the TPTP has
% retained the order in which Quaife presents the problems. The
% user may create an augmented version of this problem by adding
% all previously proved theorems (the ones that correspond to
% [BL+86] are easily identified and positioned using Quaife's
% naming scheme).
% : Used as a demodulator by Quaife.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%--------------------------------------------------------------------------
cnf(prove_intersection_with_complement_1,negated_conjecture,
intersection(complement(x),x) != null_class ).
%--------------------------------------------------------------------------