TPTP Problem File: SET129-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET129-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Membership in a built unordered triple
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : SB5.2 [Quaife]
% Status : Unsatisfiable
% Rating : 0.65 v9.0.0, 0.70 v8.2.0, 0.76 v8.1.0, 0.74 v7.4.0, 0.71 v7.3.0, 0.75 v7.1.0, 0.67 v7.0.0, 0.73 v6.2.0, 0.60 v6.1.0, 0.71 v6.0.0, 0.80 v5.5.0, 0.95 v5.3.0, 1.00 v5.2.0, 0.88 v5.0.0, 0.86 v4.1.0, 0.85 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.83 v3.3.0, 0.86 v3.2.0, 0.85 v3.1.0, 0.91 v2.7.0, 1.00 v2.1.0
% Syntax : Number of clauses : 96 ( 34 unt; 8 nHn; 66 RR)
% Number of literals : 186 ( 43 equ; 87 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 43 ( 43 usr; 12 con; 0-3 aty)
% Number of variables : 178 ( 25 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The 'set builder' problems, of which this is one, do not appear
% in [Qua92]. In Quaife's development, these problems appear
% between the SINGLETON and the ORDERED PAIRS problems of [Qu92].
% However, in order to correspond to the paper, these theorems
% have not been used in the augmented versions of the subsequent
% problems in [Qua92].
% : Not in [Qua92].
% Bugfixes : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%--------------------------------------------------------------------------
%----(SBDEF1): definition of set builder.
cnf(definition_of_set_builder,axiom,
union(singleton(X),Y) = set_builder(X,Y) ).
cnf(prove_members_of_built_triple_1,negated_conjecture,
member(u,set_builder(x,set_builder(y,set_builder(z,null_class)))) ).
cnf(prove_members_of_built_triple_2,negated_conjecture,
u != x ).
cnf(prove_members_of_built_triple_3,negated_conjecture,
u != y ).
cnf(prove_members_of_built_triple_4,negated_conjecture,
u != z ).
%--------------------------------------------------------------------------