TPTP Problem File: SET124-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET124-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Alternative definition of set builder, part 2
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : SB2.2 [Quaife]
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.14 v8.1.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.33 v6.3.0, 0.18 v6.2.0, 0.20 v6.1.0, 0.43 v6.0.0, 0.40 v5.5.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.71 v4.1.0, 0.77 v4.0.1, 0.82 v4.0.0, 0.64 v3.7.0, 0.40 v3.5.0, 0.45 v3.4.0, 0.58 v3.3.0, 0.50 v3.2.0, 0.38 v3.1.0, 0.55 v2.7.0, 0.58 v2.6.0, 0.33 v2.5.0, 0.45 v2.4.0, 0.38 v2.2.1, 0.67 v2.2.0, 0.33 v2.1.0
% Syntax : Number of clauses : 94 ( 32 unt; 8 nHn; 64 RR)
% Number of literals : 184 ( 40 equ; 85 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 41 ( 41 usr; 10 con; 0-3 aty)
% Number of variables : 178 ( 25 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The 'set builder' problems, of which this is one, do not appear
% in [Qua92]. In Quaife's development, these problems appear
% between the SINGLETON and the ORDERED PAIRS problems of [Qu92].
% However, in order to correspond to the paper, these theorems
% have not been used in the augmented versions of the subsequent
% problems in [Qua92].
% : Not in [Qua92].
% Bugfixes : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%--------------------------------------------------------------------------
%----(SBDEF1): definition of set builder.
cnf(definition_of_set_builder,axiom,
union(singleton(X),Y) = set_builder(X,Y) ).
cnf(prove_set_builder_alternate_defn2_1,negated_conjecture,
member(x,universal_class) ).
cnf(prove_set_builder_alternate_defn2_2,negated_conjecture,
~ member(x,set_builder(x,z)) ).
%--------------------------------------------------------------------------