TPTP Problem File: SET117-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET117-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Corollary 1 to every ordered pair being a set
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.14 v6.0.0, 0.00 v5.5.0, 0.10 v5.4.0, 0.15 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.18 v5.0.0, 0.21 v4.1.0, 0.15 v4.0.1, 0.27 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.17 v3.3.0, 0.14 v3.2.0, 0.15 v3.1.0, 0.18 v2.7.0, 0.17 v2.6.0, 0.11 v2.5.0, 0.18 v2.4.0, 0.00 v2.1.0
% Syntax : Number of clauses : 93 ( 31 unt; 8 nHn; 64 RR)
% Number of literals : 183 ( 40 equ; 85 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 39 ( 39 usr; 9 con; 0-3 aty)
% Number of variables : 176 ( 25 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_corollary_1_to_ordered_pairs_are_sets_1,negated_conjecture,
ordered_pair(first(x),second(x)) = x ).
cnf(prove_corollary_1_to_ordered_pairs_are_sets_2,negated_conjecture,
~ member(x,universal_class) ).
%--------------------------------------------------------------------------