TPTP Problem File: SET086+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET086+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Set Theory
% Problem : A singleton set has a member
% Version : [Qua92] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [Qua92]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.11 v8.2.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.12 v6.3.0, 0.17 v6.2.0, 0.24 v6.1.0, 0.27 v6.0.0, 0.30 v5.4.0
% Syntax : Number of formulae : 44 ( 16 unt; 0 def)
% Number of atoms : 105 ( 22 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 67 ( 6 ~; 4 |; 29 &)
% ( 19 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 26 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 89 ( 82 !; 7 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixed : v5.4.0 - Bugfixes to SET005+0 axiom file.
%------------------------------------------------------------------------------
%----Include set theory axioms
include('Axioms/SET005+0.ax').
%------------------------------------------------------------------------------
%----SS6: Existence of member_of
%----All four theorems are combined in one
fof(member_of_substitution,conjecture,
! [X] :
? [U] :
( ( member(U,universal_class)
& X = singleton(U) )
| ( ~ ? [Y] :
( member(Y,universal_class)
& X = singleton(Y) )
& U = X ) ) ).
%------------------------------------------------------------------------------