TPTP Problem File: SET066-7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET066-7 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Unordered pair is commutative
% Version : [Qua92] axioms : Augmented.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : UP1 [Qua92]
% Status : Unsatisfiable
% Rating : 0.70 v9.0.0, 0.75 v8.2.0, 0.81 v8.1.0, 0.74 v7.5.0, 0.84 v7.4.0, 0.71 v7.3.0, 0.83 v7.2.0, 0.75 v7.0.0, 0.80 v6.4.0, 0.87 v6.3.0, 0.82 v6.2.0, 1.00 v6.0.0, 0.90 v5.5.0, 1.00 v5.2.0, 0.94 v5.0.0, 1.00 v4.0.0, 0.91 v3.7.0, 0.90 v3.5.0, 1.00 v2.1.0
% Syntax : Number of clauses : 108 ( 35 unt; 12 nHn; 75 RR)
% Number of literals : 214 ( 46 equ; 98 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 40 ( 40 usr; 10 con; 0-3 aty)
% Number of variables : 210 ( 38 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Preceding lemmas are added.
% Bugfixes : v2.1.0 - Bugfix in SET004-0.ax.
%------------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%------------------------------------------------------------------------------
%----Corollaries to Unordered pair axiom. Not in paper, but in email.
cnf(corollary_1_to_unordered_pair,axiom,
( ~ member(ordered_pair(X,Y),cross_product(U,V))
| member(X,unordered_pair(X,Y)) ) ).
cnf(corollary_2_to_unordered_pair,axiom,
( ~ member(ordered_pair(X,Y),cross_product(U,V))
| member(Y,unordered_pair(X,Y)) ) ).
%----Corollaries to Cartesian product axiom.
cnf(corollary_1_to_cartesian_product,axiom,
( ~ member(ordered_pair(U,V),cross_product(X,Y))
| member(U,universal_class) ) ).
cnf(corollary_2_to_cartesian_product,axiom,
( ~ member(ordered_pair(U,V),cross_product(X,Y))
| member(V,universal_class) ) ).
%---- PARTIAL ORDER.
%----(PO1): reflexive.
cnf(subclass_is_reflexive,axiom,
subclass(X,X) ).
%----(PO2): antisymmetry is part of A-3.
%----(x < y), (y < x) --> (x = y).
%----(PO3): transitivity.
cnf(transitivity_of_subclass,axiom,
( ~ subclass(X,Y)
| ~ subclass(Y,Z)
| subclass(X,Z) ) ).
%---- EQUALITY.
%----(EQ1): equality axiom.
%----a:x:(x = x).
%----This is always an axiom in the TPTP presentation.
%----(EQ2): expanded equality definition.
cnf(equality1,axiom,
( X = Y
| member(not_subclass_element(X,Y),X)
| member(not_subclass_element(Y,X),Y) ) ).
cnf(equality2,axiom,
( ~ member(not_subclass_element(X,Y),Y)
| X = Y
| member(not_subclass_element(Y,X),Y) ) ).
cnf(equality3,axiom,
( ~ member(not_subclass_element(Y,X),X)
| X = Y
| member(not_subclass_element(X,Y),X) ) ).
cnf(equality4,axiom,
( ~ member(not_subclass_element(X,Y),Y)
| ~ member(not_subclass_element(Y,X),X)
| X = Y ) ).
%---- SPECIAL CLASSES.
%----(SP1): lemma.
cnf(special_classes_lemma,axiom,
~ member(Y,intersection(complement(X),X)) ).
%----(SP2): Existence of O (null class).
%----e:x:a:z:(-(z e x)).
cnf(existence_of_null_class,axiom,
~ member(Z,null_class) ).
%----(SP3): O is a subclass of every class.
cnf(null_class_is_subclass,axiom,
subclass(null_class,X) ).
%----corollary.
cnf(corollary_of_null_class_is_subclass,axiom,
( ~ subclass(X,null_class)
| X = null_class ) ).
%----(SP4): uniqueness of null class.
cnf(null_class_is_unique,axiom,
( Z = null_class
| member(not_subclass_element(Z,null_class),Z) ) ).
%----(SP5): O is a set (follows from axiom of infinity).
cnf(null_class_is_a_set,axiom,
member(null_class,universal_class) ).
cnf(prove_commutativity_of_unordered_pair_1,negated_conjecture,
unordered_pair(x,y) != unordered_pair(y,x) ).
%------------------------------------------------------------------------------