TPTP Problem File: SET065+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET065+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Set Theory
% Problem : Null class is a set (follows from axiom of infinity)
% Version : [Qua92] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [Qua92]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.17 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.13 v7.3.0, 0.14 v7.1.0, 0.13 v7.0.0, 0.07 v6.4.0, 0.08 v6.3.0, 0.17 v6.2.0, 0.24 v6.1.0, 0.17 v5.5.0, 0.11 v5.4.0
% Syntax : Number of formulae : 44 ( 17 unt; 0 def)
% Number of atoms : 101 ( 19 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 62 ( 5 ~; 3 |; 26 &)
% ( 19 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 26 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 86 ( 81 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixed : v5.4.0 - Bugfixes to SET005+0 axiom file.
%--------------------------------------------------------------------------
%----Include set theory axioms
include('Axioms/SET005+0.ax').
%--------------------------------------------------------------------------
%----SP5: Null class is a set (follows from axiom of infinity)
fof(null_class_is_a_set,conjecture,
member(null_class,universal_class) ).
%--------------------------------------------------------------------------