TPTP Problem File: SET047-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET047-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Set equality is symmetric
% Version : [Pel86] axioms : Incomplete.
% English : Define set equality as having exactly the same members. Prove
% set equality is symmetric.
% Refs : [DeC79] DeChampeaux (1979), Sub-problem Finder and Instance Ch
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 43 [Pel86]
% : p43.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v5.1.0, 0.09 v5.0.0, 0.07 v4.1.0, 0.12 v4.0.1, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 6 ( 0 unt; 2 nHn; 5 RR)
% Number of literals : 16 ( 0 equ; 8 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 10 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(element_substitution1,axiom,
( ~ set_equal(X,Y)
| ~ element(Z,X)
| element(Z,Y) ) ).
cnf(element_substitution2,axiom,
( ~ set_equal(X,Y)
| ~ element(Z,Y)
| element(Z,X) ) ).
cnf(clause_3,axiom,
( element(f(X,Y),X)
| element(f(X,Y),Y)
| set_equal(X,Y) ) ).
cnf(clause_4,axiom,
( ~ element(f(X,Y),Y)
| ~ element(f(X,Y),X)
| set_equal(X,Y) ) ).
cnf(prove_symmetry1,negated_conjecture,
( set_equal(a,b)
| set_equal(b,a) ) ).
cnf(prove_symmetry2,negated_conjecture,
( ~ set_equal(b,a)
| ~ set_equal(a,b) ) ).
%--------------------------------------------------------------------------