TPTP Problem File: SET047+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET047+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Set Theory
% Problem : Set equality is symmetric
% Version : Especial.
% English : Define set equality as having exactly the same members. Prove
% set equality is symmetric.
% Refs : [DeC79] DeChampeaux (1979), Sub-problem Finder and Instance Ch
% : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Pel86]
% Names : Pelletier 43 [Pel86]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.04 v6.0.0, 0.50 v5.5.0, 0.04 v5.3.0, 0.17 v5.2.0, 0.00 v4.0.0, 0.05 v3.7.0, 0.00 v3.3.0, 0.11 v3.2.0, 0.22 v3.1.0, 0.17 v2.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 2 ( 0 unt; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 5 ( 5 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : The version in [Hah94] is a bit expanded.
%--------------------------------------------------------------------------
fof(pel43_1,axiom,
! [X,Y] :
( set_equal(X,Y)
<=> ! [Z] :
( element(Z,X)
<=> element(Z,Y) ) ) ).
fof(pel43,conjecture,
! [X,Y] :
( set_equal(X,Y)
<=> set_equal(Y,X) ) ).
%--------------------------------------------------------------------------