TPTP Problem File: SET046-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET046-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : No set of non-circular sets
% Version : [Pel86] axioms : Incomplete.
% English : A set is circular if it is a member of another set which
% in turn is a member of the orginal. Intuitively all sets are
% non-circular. Prove there is no set of non-circular sets.
% Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 42 [Pel86]
% : p42.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.25 v6.3.0, 0.29 v6.2.0, 0.11 v6.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 3 ( 0 unt; 2 nHn; 1 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 4 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
( ~ element(X,a)
| ~ element(X,Y)
| ~ element(Y,X) ) ).
cnf(clause_2,negated_conjecture,
( element(X,f(X))
| element(X,a) ) ).
cnf(clause_3,negated_conjecture,
( element(f(X),X)
| element(X,a) ) ).
%--------------------------------------------------------------------------