TPTP Problem File: SET045-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET045-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : No Universal Set
% Version : [Pel86] axioms : Incomplete.
% English : The restricted comprehension axiom says : given a set
% z, there is a set all of whose members are drawn from z and
% which satisfy some property. If there were a universal set,
% then the Russell set could be formed, using this axiom.
% So given the appropriate instance of this axiom, there
% is no universal set.
% Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 41 [Pel86]
% : p41.in [ANL]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.00 v2.0.0
% Syntax : Number of clauses : 4 ( 1 unt; 1 nHn; 3 RR)
% Number of literals : 8 ( 0 equ; 4 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 7 ( 2 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,axiom,
( ~ element(X,f(Y))
| element(X,Y) ) ).
cnf(clause_2,axiom,
( ~ element(X,f(Y))
| ~ element(X,X) ) ).
cnf(clause_3,axiom,
( ~ element(X,Y)
| element(X,X)
| element(X,f(Y)) ) ).
cnf(clause_4,negated_conjecture,
element(X,a) ).
%--------------------------------------------------------------------------