TPTP Problem File: SET044-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET044-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Anti-Russell Sets
% Version : [Pel86] axioms : Incomplete.
% English : If there were an anti-Russell set (a set that contains
% exactly those sets that are members of themselves), then not
% every set has a complement.
% Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Pel88] Pelletier (1988), Errata
% Source : [Pel86]
% Names : Pelletier 40 [Pel86]
% : p40.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v7.1.0, 0.17 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 4 ( 0 unt; 1 nHn; 3 RR)
% Number of literals : 8 ( 0 equ; 4 neg)
% Maximal clause size : 2 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : This problem is incorrect in [Pel86] and is corrected in [Pel88].
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
( ~ element(X,a)
| element(X,X) ) ).
cnf(clause_2,negated_conjecture,
( ~ element(X,X)
| element(X,a) ) ).
cnf(clause_3,negated_conjecture,
( ~ element(Y,f(X))
| ~ element(Y,X) ) ).
cnf(clause_4,negated_conjecture,
( element(Y,X)
| element(Y,f(X)) ) ).
%--------------------------------------------------------------------------