TPTP Problem File: SET044+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET044+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Set Theory
% Problem : Anti-Russell Sets
% Version : Especial.
% English : If there were an anti-Russell set (a set that contains exactly
% those sets that are members of themselves), then not every set
% has a complement.
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Hah94] Haehnle (1994), Email to G. Sutcliffe
% Source : [Hah94]
% Names : Pelletier 40 [Pel86]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.08 v5.4.0, 0.09 v5.3.0, 0.17 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.08 v3.3.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 4 ( 0 equ)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 5 ( 2 ~; 0 |; 0 &)
% ( 2 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 5 ( 3 !; 2 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(pel40,conjecture,
( ? [Y] :
! [X] :
( element(X,Y)
<=> element(X,X) )
=> ~ ! [X1] :
? [Y1] :
! [Z] :
( element(Z,Y1)
<=> ~ element(Z,X1) ) ) ).
%--------------------------------------------------------------------------