TPTP Problem File: SET036-3.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : SET036-3 : TPTP v8.2.0. Released v1.0.0.
% Domain   : Set Theory
% Problem  : Properties of apply for functions, part 1 of 3
% Version  : [BL+86] axioms : Augmented.
% English  :

% Refs     : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source   : [BL+86]
% Names    : Lemma 21 [BL+86]

% Status   : Unsatisfiable
% Rating   : 1.00 v8.2.0, 0.95 v7.5.0, 1.00 v7.4.0, 0.88 v7.3.0, 0.92 v7.0.0, 1.00 v6.2.0, 0.90 v6.1.0, 1.00 v6.0.0, 0.90 v5.5.0, 1.00 v2.0.0
% Syntax   : Number of clauses     :  166 (  21 unt;  20 nHn; 137 RR)
%            Number of literals    :  409 (  58 equ; 227 neg)
%            Maximal clause size   :    8 (   2 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   14 (  13 usr;   0 prp; 1-5 aty)
%            Number of functors    :   62 (  62 usr;   9 con; 0-5 aty)
%            Number of variables   :  365 (  36 sgn)
% SPC      : CNF_UNS_RFO_SEQ_NHN

% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
    ( ~ little_set(X)
    | ~ little_set(U)
    | ordered_pair(X,Y) != ordered_pair(U,V)
    | X = U ) ).

cnf(left_cancellation,axiom,
    ( ~ little_set(X)
    | ~ little_set(Y)
    | non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
    | X = Y ) ).

cnf(second_components_are_equal,axiom,
    ( ~ little_set(X)
    | ~ little_set(Y)
    | ~ little_set(U)
    | ~ little_set(V)
    | ordered_pair(X,Y) != ordered_pair(U,V)
    | Y = V ) ).

cnf(two_sets_equal,axiom,
    ( ~ subset(X,Y)
    | ~ subset(Y,X)
    | X = Y ) ).

cnf(property_of_first,axiom,
    ( ~ little_set(X)
    | ~ little_set(Y)
    | first(ordered_pair(X,Y)) = X ) ).

cnf(property_of_second,axiom,
    ( ~ little_set(X)
    | ~ little_set(Y)
    | second(ordered_pair(X,Y)) = Y ) ).

cnf(first_component_is_small,axiom,
    ( ~ ordered_pair_predicate(X)
    | little_set(first(X)) ) ).

cnf(second_component_is_small,axiom,
    ( ~ ordered_pair_predicate(X)
    | little_set(second(X)) ) ).

cnf(property_of_singleton_sets,axiom,
    ( ~ little_set(X)
    | member(X,singleton_set(X)) ) ).

cnf(ordered_pairs_are_small1,axiom,
    little_set(ordered_pair(X,Y)) ).

cnf(ordered_pairs_are_small2,axiom,
    ( ~ ordered_pair_predicate(X)
    | little_set(X) ) ).

cnf(containment_is_transitive,axiom,
    ( ~ subset(X,Y)
    | ~ subset(Y,Z)
    | subset(X,Z) ) ).

cnf(image_and_apply1,axiom,
    subset(apply(Xf,Y),sigma(image(singleton_set(Y),Xf))) ).

cnf(image_and_apply2,axiom,
    subset(image(singleton_set(Y),Xf),apply(Xf,Y)) ).

cnf(function_values_are_small,axiom,
    ( ~ function(Y)
    | little_set(apply(Y,X)) ) ).

cnf(composition_is_a_relation,axiom,
    relation(compose(Y,X)) ).

cnf(range_of_composition,axiom,
    subset(range_of(compose(Y,X)),range_of(Y)) ).

cnf(domain_of_composition,axiom,
    ( ~ subset(range_of(X),domain_of(Y))
    | domain_of(X) = domain_of(compose(Y,X)) ) ).

cnf(composition_is_a_function,axiom,
    ( ~ function(X)
    | ~ function(Y)
    | function(compose(Y,X)) ) ).

cnf(maps_for_composition,axiom,
    ( ~ maps(Xf,U,V)
    | ~ maps(Xg,V,W)
    | maps(compose(Xg,Xf),U,W) ) ).

cnf(a_little_set,hypothesis,
    little_set(a) ).

cnf(b_little_set,hypothesis,
    little_set(b) ).

cnf(a_function,hypothesis,
    function(a_function) ).

cnf(ordered_pair_in_function,hypothesis,
    member(ordered_pair(a,b),a_function) ).

cnf(prove_apply_for_functions1,negated_conjecture,
    apply(a_function,a) != b ).

%--------------------------------------------------------------------------