TPTP Problem File: SET036-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET036-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Properties of apply for functions, part 1 of 3
% Version : [BL+86] axioms : Augmented.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 21 [BL+86]
% Status : Unsatisfiable
% Rating : 1.00 v8.2.0, 0.95 v7.5.0, 1.00 v7.4.0, 0.88 v7.3.0, 0.92 v7.0.0, 1.00 v6.2.0, 0.90 v6.1.0, 1.00 v6.0.0, 0.90 v5.5.0, 1.00 v2.0.0
% Syntax : Number of clauses : 166 ( 21 unt; 20 nHn; 137 RR)
% Number of literals : 409 ( 58 equ; 227 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 62 ( 62 usr; 9 con; 0-5 aty)
% Number of variables : 365 ( 36 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(left_cancellation,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
| X = Y ) ).
cnf(second_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| ~ little_set(U)
| ~ little_set(V)
| ordered_pair(X,Y) != ordered_pair(U,V)
| Y = V ) ).
cnf(two_sets_equal,axiom,
( ~ subset(X,Y)
| ~ subset(Y,X)
| X = Y ) ).
cnf(property_of_first,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| first(ordered_pair(X,Y)) = X ) ).
cnf(property_of_second,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| second(ordered_pair(X,Y)) = Y ) ).
cnf(first_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(first(X)) ) ).
cnf(second_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(second(X)) ) ).
cnf(property_of_singleton_sets,axiom,
( ~ little_set(X)
| member(X,singleton_set(X)) ) ).
cnf(ordered_pairs_are_small1,axiom,
little_set(ordered_pair(X,Y)) ).
cnf(ordered_pairs_are_small2,axiom,
( ~ ordered_pair_predicate(X)
| little_set(X) ) ).
cnf(containment_is_transitive,axiom,
( ~ subset(X,Y)
| ~ subset(Y,Z)
| subset(X,Z) ) ).
cnf(image_and_apply1,axiom,
subset(apply(Xf,Y),sigma(image(singleton_set(Y),Xf))) ).
cnf(image_and_apply2,axiom,
subset(image(singleton_set(Y),Xf),apply(Xf,Y)) ).
cnf(function_values_are_small,axiom,
( ~ function(Y)
| little_set(apply(Y,X)) ) ).
cnf(composition_is_a_relation,axiom,
relation(compose(Y,X)) ).
cnf(range_of_composition,axiom,
subset(range_of(compose(Y,X)),range_of(Y)) ).
cnf(domain_of_composition,axiom,
( ~ subset(range_of(X),domain_of(Y))
| domain_of(X) = domain_of(compose(Y,X)) ) ).
cnf(composition_is_a_function,axiom,
( ~ function(X)
| ~ function(Y)
| function(compose(Y,X)) ) ).
cnf(maps_for_composition,axiom,
( ~ maps(Xf,U,V)
| ~ maps(Xg,V,W)
| maps(compose(Xg,Xf),U,W) ) ).
cnf(a_little_set,hypothesis,
little_set(a) ).
cnf(b_little_set,hypothesis,
little_set(b) ).
cnf(a_function,hypothesis,
function(a_function) ).
cnf(ordered_pair_in_function,hypothesis,
member(ordered_pair(a,b),a_function) ).
cnf(prove_apply_for_functions1,negated_conjecture,
apply(a_function,a) != b ).
%--------------------------------------------------------------------------