TPTP Problem File: SET035-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET035-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Maps for composition
% Version : [Qua92] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : MA1 [Quaife]
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 115 ( 40 unt; 8 nHn; 82 RR)
% Number of literals : 221 ( 49 equ; 101 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 51 ( 51 usr; 17 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Not in [Qua92].
% : This problem has been removed from its position in Quaife's
% order of presentation because it corresponds to one of [BL+86]
% problems. If the user wishes to create augmented versions of
% the Quaife problems, the theorem name above indicates its
% position in Quaife's ordering.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%--------------------------------------------------------------------------
cnf(prove_composition_of_mappings_1,negated_conjecture,
maps(xf,u,v) ).
cnf(prove_composition_of_mappings_2,negated_conjecture,
maps(xg,v,w) ).
cnf(prove_composition_of_mappings_3,negated_conjecture,
~ maps(compose(xg,xf),u,w) ).
%--------------------------------------------------------------------------