TPTP Problem File: SET031-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET031-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : The composition of two sets is a relation
% Version : [BL+86] axioms : Augmented.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 16 [BL+86]
% Status : Unsatisfiable
% Rating : 0.35 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.37 v7.5.0, 0.32 v7.4.0, 0.29 v7.3.0, 0.33 v7.1.0, 0.25 v7.0.0, 0.40 v6.3.0, 0.36 v6.2.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.70 v5.5.0, 0.85 v5.3.0, 0.89 v5.2.0, 0.81 v5.1.0, 0.82 v5.0.0, 0.79 v4.1.0, 0.77 v4.0.1, 0.73 v4.0.0, 0.64 v3.7.0, 0.50 v3.5.0, 0.55 v3.4.0, 0.67 v3.3.0, 0.71 v3.2.0, 0.85 v3.1.0, 0.55 v2.7.0, 0.58 v2.6.0, 0.40 v2.5.0, 0.58 v2.4.0, 0.44 v2.2.1, 0.56 v2.2.0, 0.56 v2.1.0, 0.67 v2.0.0
% Syntax : Number of clauses : 157 ( 15 unt; 20 nHn; 130 RR)
% Number of literals : 395 ( 56 equ; 222 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 61 ( 61 usr; 8 con; 0-5 aty)
% Number of variables : 352 ( 33 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(left_cancellation,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
| X = Y ) ).
cnf(second_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| ~ little_set(U)
| ~ little_set(V)
| ordered_pair(X,Y) != ordered_pair(U,V)
| Y = V ) ).
cnf(two_sets_equal,axiom,
( ~ subset(X,Y)
| ~ subset(Y,X)
| X = Y ) ).
cnf(property_of_first,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| first(ordered_pair(X,Y)) = X ) ).
cnf(property_of_second,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| second(ordered_pair(X,Y)) = Y ) ).
cnf(first_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(first(X)) ) ).
cnf(second_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(second(X)) ) ).
cnf(property_of_singleton_sets,axiom,
( ~ little_set(X)
| member(X,singleton_set(X)) ) ).
cnf(ordered_pairs_are_small1,axiom,
little_set(ordered_pair(X,Y)) ).
cnf(ordered_pairs_are_small2,axiom,
( ~ ordered_pair_predicate(X)
| little_set(X) ) ).
cnf(containment_is_transitive,axiom,
( ~ subset(X,Y)
| ~ subset(Y,Z)
| subset(X,Z) ) ).
cnf(image_and_apply1,axiom,
subset(apply(Xf,Y),sigma(image(singleton_set(Y),Xf))) ).
cnf(image_and_apply2,axiom,
subset(image(singleton_set(Y),Xf),apply(Xf,Y)) ).
cnf(function_values_are_small,axiom,
( ~ function(Y)
| little_set(apply(Y,X)) ) ).
cnf(prove_composition_is_a_relation,negated_conjecture,
~ relation(compose(a,b)) ).
%--------------------------------------------------------------------------