TPTP Problem File: SET027-7.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET027-7 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Transitivity of subset
% Version : [Qua92] axioms : Augmented.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : PO3 [Qua92]
% Status : Unsatisfiable
% Rating : 0.15 v8.2.0, 0.19 v8.1.0, 0.16 v7.4.0, 0.12 v7.3.0, 0.00 v7.0.0, 0.13 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.17 v5.2.0, 0.12 v5.0.0, 0.14 v4.1.0, 0.15 v4.0.1, 0.18 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.15 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.5.0, 0.09 v2.4.0, 0.00 v2.1.0
% Syntax : Number of clauses : 99 ( 33 unt; 8 nHn; 69 RR)
% Number of literals : 193 ( 39 equ; 89 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 41 ( 41 usr; 11 con; 0-3 aty)
% Number of variables : 193 ( 35 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Preceding lemmas are added.
% Bugfixes : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%--------------------------------------------------------------------------
%----Corollaries to Unordered pair axiom. Not in paper, but in email.
cnf(corollary_1_to_unordered_pair,axiom,
( ~ member(ordered_pair(X,Y),cross_product(U,V))
| member(X,unordered_pair(X,Y)) ) ).
cnf(corollary_2_to_unordered_pair,axiom,
( ~ member(ordered_pair(X,Y),cross_product(U,V))
| member(Y,unordered_pair(X,Y)) ) ).
%----Corollaries to Cartesian product axiom.
cnf(corollary_1_to_cartesian_product,axiom,
( ~ member(ordered_pair(U,V),cross_product(X,Y))
| member(U,universal_class) ) ).
cnf(corollary_2_to_cartesian_product,axiom,
( ~ member(ordered_pair(U,V),cross_product(X,Y))
| member(V,universal_class) ) ).
%---- PARTIAL ORDER.
%----(PO1): reflexive.
cnf(subclass_is_reflexive,axiom,
subclass(X,X) ).
%----(PO2): antisymmetry is part of A-3.
%----(x < y), (y < x) --> (x = y).
cnf(prove_transitivity_of_subclass_1,negated_conjecture,
subclass(x,y) ).
cnf(prove_transitivity_of_subclass_2,negated_conjecture,
subclass(y,z) ).
cnf(prove_transitivity_of_subclass_3,negated_conjecture,
~ subclass(x,z) ).
%--------------------------------------------------------------------------