TPTP Problem File: SET025-8.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET025-8 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Ordered pairs are little sets
% Version : [BL+86] axioms : Augmented.
% Theorem formulation : Predicate for ordered pairs.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 11 [BL+86]
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.05 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.20 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.29 v6.0.0, 0.10 v5.5.0, 0.30 v5.3.0, 0.39 v5.2.0, 0.31 v5.1.0, 0.47 v5.0.0, 0.36 v4.1.0, 0.38 v4.0.1, 0.27 v4.0.0, 0.18 v3.7.0, 0.00 v3.4.0, 0.17 v3.3.0, 0.29 v3.2.0, 0.38 v3.1.0, 0.27 v2.7.0, 0.17 v2.6.0, 0.10 v2.5.0, 0.42 v2.4.0, 0.00 v2.3.0, 0.11 v2.2.1, 0.33 v2.2.0, 0.44 v2.1.0, 0.56 v2.0.0
% Syntax : Number of clauses : 153 ( 14 unt; 20 nHn; 129 RR)
% Number of literals : 387 ( 56 equ; 218 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 60 ( 60 usr; 7 con; 0-5 aty)
% Number of variables : 342 ( 32 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(left_cancellation,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
| X = Y ) ).
cnf(second_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| ~ little_set(U)
| ~ little_set(V)
| ordered_pair(X,Y) != ordered_pair(U,V)
| Y = V ) ).
cnf(two_sets_equal,axiom,
( ~ subset(X,Y)
| ~ subset(Y,X)
| X = Y ) ).
cnf(property_of_first,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| first(ordered_pair(X,Y)) = X ) ).
cnf(property_of_second,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| second(ordered_pair(X,Y)) = Y ) ).
cnf(first_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(first(X)) ) ).
cnf(second_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(second(X)) ) ).
cnf(property_of_singleton_sets,axiom,
( ~ little_set(X)
| member(X,singleton_set(X)) ) ).
cnf(ordered_pairs_are_small1,axiom,
little_set(ordered_pair(X,Y)) ).
cnf(an_ordered_pair_predicate,hypothesis,
ordered_pair_predicate(a) ).
cnf(prove_predicate_is_small,negated_conjecture,
~ little_set(a) ).
%--------------------------------------------------------------------------