TPTP Problem File: SET024-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET024-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : A set belongs to its singleton
% Version : [BL+86] axioms : Augmented.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 9 [BL+86]
% Status : Unsatisfiable
% Rating : 0.10 v8.2.0, 0.05 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.2.0, 0.17 v7.1.0, 0.00 v7.0.0, 0.20 v6.3.0, 0.18 v6.2.0, 0.10 v6.1.0, 0.14 v6.0.0, 0.00 v5.5.0, 0.10 v5.3.0, 0.17 v5.2.0, 0.19 v5.1.0, 0.24 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.1, 0.09 v4.0.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.08 v3.1.0, 0.18 v2.7.0, 0.08 v2.6.0, 0.00 v2.5.0, 0.17 v2.4.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.33 v2.1.0, 0.33 v2.0.0
% Syntax : Number of clauses : 151 ( 13 unt; 20 nHn; 128 RR)
% Number of literals : 384 ( 56 equ; 217 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 60 ( 60 usr; 7 con; 0-5 aty)
% Number of variables : 339 ( 30 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(left_cancellation,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
| X = Y ) ).
cnf(second_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| ~ little_set(U)
| ~ little_set(V)
| ordered_pair(X,Y) != ordered_pair(U,V)
| Y = V ) ).
cnf(two_sets_equal,axiom,
( ~ subset(X,Y)
| ~ subset(Y,X)
| X = Y ) ).
cnf(property_of_first,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| first(ordered_pair(X,Y)) = X ) ).
cnf(property_of_second,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| second(ordered_pair(X,Y)) = Y ) ).
cnf(first_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(first(X)) ) ).
cnf(second_component_is_small,axiom,
( ~ ordered_pair_predicate(X)
| little_set(second(X)) ) ).
cnf(a_little_set,hypothesis,
little_set(a) ).
cnf(prove_membership_of_singleton_set,negated_conjecture,
~ member(a,singleton_set(a)) ).
%--------------------------------------------------------------------------