TPTP Problem File: SET021-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET021-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : 2nd is unique when x is an ordered pair of sets
% Version : [BL+86] axioms : Augmented.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 6 [BL+86]
% Status : Unsatisfiable
% Rating : 0.90 v9.0.0, 0.85 v8.2.0, 0.95 v7.5.0, 1.00 v7.3.0, 0.83 v7.0.0, 1.00 v6.4.0, 0.87 v6.3.0, 1.00 v6.0.0, 0.90 v5.5.0, 0.95 v5.3.0, 0.94 v5.2.0, 1.00 v2.0.0
% Syntax : Number of clauses : 149 ( 14 unt; 20 nHn; 126 RR)
% Number of literals : 378 ( 56 equ; 213 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 61 ( 61 usr; 8 con; 0-5 aty)
% Number of variables : 335 ( 30 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(left_cancellation,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
| X = Y ) ).
cnf(second_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| ~ little_set(U)
| ~ little_set(V)
| ordered_pair(X,Y) != ordered_pair(U,V)
| Y = V ) ).
cnf(two_sets_equal,axiom,
( ~ subset(X,Y)
| ~ subset(Y,X)
| X = Y ) ).
cnf(property_of_first,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| first(ordered_pair(X,Y)) = X ) ).
cnf(a_little_set,hypothesis,
little_set(a) ).
cnf(b_little_set,hypothesis,
little_set(b) ).
cnf(prove_second_is_second,negated_conjecture,
second(ordered_pair(a,b)) != b ).
%--------------------------------------------------------------------------