TPTP Problem File: SET019-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET019-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Two sets that contain one another are equal
% Version : [BL+86] axioms : Augmented.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 4 [BL+86]
% Status : Unsatisfiable
% Rating : 0.45 v9.0.0, 0.50 v8.2.0, 0.48 v8.1.0, 0.47 v7.5.0, 0.53 v7.4.0, 0.59 v7.3.0, 0.58 v7.1.0, 0.50 v7.0.0, 0.40 v6.3.0, 0.36 v6.2.0, 0.30 v6.1.0, 0.43 v6.0.0, 0.50 v5.5.0, 0.60 v5.3.0, 0.61 v5.2.0, 0.56 v5.1.0, 0.59 v5.0.0, 0.50 v4.1.0, 0.38 v4.0.1, 0.36 v3.7.0, 0.20 v3.5.0, 0.27 v3.4.0, 0.50 v3.2.0, 0.31 v3.1.0, 0.36 v2.7.0, 0.33 v2.6.0, 0.30 v2.5.0, 0.42 v2.4.0, 0.33 v2.2.1, 0.44 v2.2.0, 0.33 v2.1.0, 0.56 v2.0.0
% Syntax : Number of clauses : 147 ( 14 unt; 20 nHn; 124 RR)
% Number of literals : 372 ( 54 equ; 209 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 61 ( 61 usr; 8 con; 0-5 aty)
% Number of variables : 331 ( 30 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(left_cancellation,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| non_ordered_pair(Z,X) != non_ordered_pair(Z,Y)
| X = Y ) ).
cnf(second_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(Y)
| ~ little_set(U)
| ~ little_set(V)
| ordered_pair(X,Y) != ordered_pair(U,V)
| Y = V ) ).
cnf(a_contains_b,hypothesis,
subset(b,a) ).
cnf(b_contains_a,hypothesis,
subset(a,b) ).
cnf(prove__a_equals_b,negated_conjecture,
a != b ).
%--------------------------------------------------------------------------