TPTP Problem File: SET018-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET018-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Second components of equal ordered pairs are equal
% Version : [BL+86] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 3 [BL+86]
% Status : Unsatisfiable
% Rating : 0.55 v8.2.0, 0.57 v8.1.0, 0.58 v7.5.0, 0.63 v7.4.0, 0.53 v7.3.0, 0.50 v7.1.0, 0.42 v7.0.0, 0.67 v6.3.0, 0.64 v6.2.0, 0.60 v6.1.0, 0.71 v6.0.0, 0.80 v5.5.0, 0.90 v5.3.0, 0.94 v5.0.0, 0.86 v4.1.0, 0.85 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.83 v3.3.0, 0.86 v3.2.0, 0.92 v3.1.0, 0.91 v2.7.0, 1.00 v2.0.0
% Syntax : Number of clauses : 147 ( 17 unt; 20 nHn; 124 RR)
% Number of literals : 361 ( 49 equ; 198 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 63 ( 63 usr; 10 con; 0-5 aty)
% Number of variables : 320 ( 28 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
cnf(a_little_set,hypothesis,
little_set(a) ).
cnf(b_little_set,hypothesis,
little_set(b) ).
cnf(c_little_set,hypothesis,
little_set(c) ).
cnf(d_little_set,hypothesis,
little_set(d) ).
cnf(equal_ordered_pair,hypothesis,
ordered_pair(a,b) = ordered_pair(c,d) ).
cnf(prove_second_components_equal,negated_conjecture,
b != d ).
%--------------------------------------------------------------------------