TPTP Problem File: SET017-6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET017-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : Left cancellation for non-ordered pairs
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names :
% Status : Unsatisfiable
% Rating : 0.15 v8.2.0, 0.19 v8.1.0, 0.11 v7.5.0, 0.16 v7.4.0, 0.24 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.20 v6.3.0, 0.18 v6.2.0, 0.30 v6.1.0, 0.29 v6.0.0, 0.20 v5.5.0, 0.40 v5.3.0, 0.39 v5.2.0, 0.31 v5.1.0, 0.35 v5.0.0, 0.36 v4.1.0, 0.15 v4.0.1, 0.36 v3.7.0, 0.30 v3.5.0, 0.27 v3.4.0, 0.17 v3.3.0, 0.14 v3.2.0, 0.15 v3.1.0, 0.18 v2.7.0, 0.25 v2.6.0, 0.11 v2.5.0, 0.09 v2.4.0, 0.25 v2.2.1, 0.17 v2.2.0, 0.33 v2.1.0
% Syntax : Number of clauses : 94 ( 32 unt; 8 nHn; 65 RR)
% Number of literals : 184 ( 41 equ; 85 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 41 ( 41 usr; 11 con; 0-3 aty)
% Number of variables : 176 ( 25 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in SET004-0.ax.
%------------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%------------------------------------------------------------------------------
cnf(prove_left_cancellation_1,negated_conjecture,
unordered_pair(x,y) = unordered_pair(x,z) ).
cnf(prove_left_cancellation_2,negated_conjecture,
member(ordered_pair(y,z),cross_product(universal_class,universal_class)) ).
cnf(prove_left_cancellation_3,negated_conjecture,
y != z ).
%------------------------------------------------------------------------------