TPTP Problem File: SET017-3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET017-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : Left cancellation for non-ordered pairs
% Version : [BL+86] axioms : Augmented.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 2 [BL+86]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 146 ( 15 unt; 20 nHn; 123 RR)
% Number of literals : 363 ( 51 equ; 201 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 63 ( 63 usr; 10 con; 0-5 aty)
% Number of variables : 324 ( 30 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments :
%------------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%------------------------------------------------------------------------------
%----Previously proved lemmas are added at each step
cnf(first_components_are_equal,axiom,
( ~ little_set(X)
| ~ little_set(U)
| ordered_pair(X,Y) != ordered_pair(U,V)
| X = U ) ).
cnf(a_little_set,hypothesis,
little_set(a) ).
cnf(b_little_set,hypothesis,
little_set(b) ).
cnf(equal_non_ordered_pairs,hypothesis,
non_ordered_pair(c,a) = non_ordered_pair(d,b) ).
cnf(prove_left_cancellation,negated_conjecture,
a != c ).
%------------------------------------------------------------------------------