TPTP Problem File: SET016-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET016-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : First components of equal ordered pairs are equal
% Version : [BL+86] axioms.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [BL+86]
% Names : Lemma 1 [BL+86]
% Status : Unsatisfiable
% Rating : 0.45 v8.2.0, 0.48 v8.1.0, 0.42 v7.5.0, 0.53 v7.3.0, 0.50 v7.1.0, 0.42 v7.0.0, 0.53 v6.3.0, 0.45 v6.2.0, 0.60 v6.1.0, 0.71 v6.0.0, 0.80 v5.5.0, 0.90 v5.3.0, 0.94 v5.2.0, 0.88 v5.0.0, 0.86 v4.1.0, 0.85 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.83 v3.3.0, 0.86 v3.2.0, 0.77 v3.1.0, 0.73 v2.7.0, 0.75 v2.6.0, 0.70 v2.5.0, 0.75 v2.4.0, 0.89 v2.2.1, 1.00 v2.0.0
% Syntax : Number of clauses : 145 ( 15 unt; 20 nHn; 122 RR)
% Number of literals : 359 ( 49 equ; 198 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-5 aty)
% Number of functors : 63 ( 63 usr; 10 con; 0-5 aty)
% Number of variables : 320 ( 28 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Godel's set axioms
include('Axioms/SET003-0.ax').
%--------------------------------------------------------------------------
cnf(little_set_a,hypothesis,
little_set(a) ).
cnf(little_set_b,hypothesis,
little_set(b) ).
cnf(equal_ordered_pairs,hypothesis,
ordered_pair(a,c) = ordered_pair(b,d) ).
cnf(prove_first_components_equal,negated_conjecture,
a != b ).
%--------------------------------------------------------------------------