TPTP Problem File: SET015-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET015-4 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Set Theory
% Problem : The union of sets is commutative
% Version : [BL+86] axioms : Reduced > Incomplete.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [ANL]
% Names : union.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.30 v8.2.0, 0.29 v8.1.0, 0.26 v7.5.0, 0.37 v7.4.0, 0.24 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.47 v6.3.0, 0.27 v6.2.0, 0.40 v6.1.0, 0.57 v6.0.0, 0.60 v5.5.0, 0.85 v5.4.0, 0.80 v5.3.0, 0.89 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.64 v4.1.0, 0.62 v4.0.1, 0.55 v4.0.0, 0.45 v3.7.0, 0.30 v3.5.0, 0.27 v3.4.0, 0.50 v3.3.0, 0.64 v3.2.0, 0.62 v3.1.0, 0.45 v2.7.0, 0.58 v2.6.0, 0.56 v2.5.0, 0.45 v2.4.0, 0.50 v2.3.0, 0.25 v2.2.1, 0.57 v2.2.0, 0.80 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 15 ( 5 unt; 3 nHn; 11 RR)
% Number of literals : 29 ( 7 equ; 13 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 25 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v1.2.1 - Missing substitution axioms added.
%--------------------------------------------------------------------------
%----Axiom A-2, elements of sets are little sets.
cnf(a2,axiom,
( ~ member(X,Y)
| little_set(X) ) ).
%----Axiom A-3, principle of extensionality
cnf(extensionality1,axiom,
( little_set(f1(X,Y))
| X = Y ) ).
cnf(extensionality2,axiom,
( member(f1(X,Y),X)
| member(f1(X,Y),Y)
| X = Y ) ).
cnf(extensionality3,axiom,
( ~ member(f1(X,Y),X)
| ~ member(f1(X,Y),Y)
| X = Y ) ).
%----Axiom B-2, intersection
cnf(intersection1,axiom,
( ~ member(Z,intersection(X,Y))
| member(Z,X) ) ).
cnf(intersection2,axiom,
( ~ member(Z,intersection(X,Y))
| member(Z,Y) ) ).
cnf(intersection3,axiom,
( member(Z,intersection(X,Y))
| ~ member(Z,X)
| ~ member(Z,Y) ) ).
%----Axiom B-3, complement
cnf(complement1,axiom,
( ~ member(Z,complement(X))
| ~ member(Z,X) ) ).
cnf(complement2,axiom,
( member(Z,complement(X))
| ~ little_set(Z)
| member(Z,X) ) ).
%----Definition of union
cnf(union,axiom,
union(X,Y) = complement(intersection(complement(X),complement(Y))) ).
%----Definition of empty set
cnf(empty_set,axiom,
~ member(Z,empty_set) ).
%----Definition of universal set
cnf(universal_set,axiom,
( member(Z,universal_set)
| ~ little_set(Z) ) ).
cnf(a_union_b_is_c,hypothesis,
union(as,bs) = cs ).
cnf(b_union_a_is_d,hypothesis,
union(bs,as) = ds ).
cnf(prove_c_equals_d,negated_conjecture,
cs != ds ).
%--------------------------------------------------------------------------