TPTP Problem File: SET014-6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET014-6 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Set Theory
% Problem : If X (= Z and Y (= Z, then X U Y (= Z
% Version : [Qua92] axioms.
% English : If A and B are contained in C then the union of A and B is also.
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : LA2.1 [Qua92]
% Status : Unsatisfiable
% Rating : 0.45 v9.0.0, 0.50 v8.2.0, 0.62 v8.1.0, 0.58 v7.4.0, 0.59 v7.3.0, 0.58 v7.1.0, 0.50 v7.0.0, 0.60 v6.3.0, 0.64 v6.2.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.50 v5.5.0, 0.85 v5.4.0, 0.80 v5.3.0, 0.83 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.86 v4.1.0, 0.85 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.92 v3.3.0, 0.86 v3.2.0, 0.85 v3.1.0, 0.73 v2.7.0, 0.83 v2.6.0, 0.78 v2.5.0, 0.82 v2.4.0, 0.88 v2.3.0, 1.00 v2.1.0
% Syntax : Number of clauses : 115 ( 40 unt; 8 nHn; 82 RR)
% Number of literals : 221 ( 49 equ; 101 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 49 ( 49 usr; 15 con; 0-3 aty)
% Number of variables : 214 ( 32 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. With a few exceptions (the
% problems that correspond to [BL+86] problems), the TPTP has
% retained the order in which Quaife presents the problems. The
% user may create an augmented version of this problem by adding
% all previously proved theorems (the ones that correspond to
% [BL+86] are easily identified and positioned using Quaife's
% naming scheme).
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
% : v2.2.0 - Renamed from SET198-6.p.
%------------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include von Neuman-Bernays-Godel Boolean Algebra definitions
include('Axioms/SET004-1.ax').
%------------------------------------------------------------------------------
cnf(prove_least_upper_bound_1,negated_conjecture,
subclass(x,z) ).
cnf(prove_least_upper_bound_2,negated_conjecture,
subclass(y,z) ).
cnf(prove_least_upper_bound_3,negated_conjecture,
~ subclass(union(x,y),z) ).
%------------------------------------------------------------------------------