TPTP Problem File: SET014+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET014+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X (= Z and Y (= Z, then X U Y (= Z
% Version : [Try90] axioms : Reduced > Incomplete.
% English : If X is a subset of Z and Y is a subset of Z, then the union of
% X and Y is a subset of Z.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (32) [TS89]
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.11 v8.1.0, 0.06 v7.4.0, 0.10 v7.3.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.00 v6.4.0, 0.04 v6.2.0, 0.00 v6.1.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.05 v5.1.0, 0.10 v5.0.0, 0.12 v4.1.0, 0.09 v4.0.1, 0.13 v4.0.0, 0.12 v3.7.0, 0.15 v3.5.0, 0.11 v3.4.0, 0.26 v3.3.0, 0.21 v3.2.0, 0.36 v3.1.0, 0.33 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 6 ( 2 unt; 0 def)
% Number of atoms : 14 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 8 ( 0 ~; 1 |; 1 &)
% ( 4 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 15 ( 15 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom37,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(32),1833206)
fof(prove_union_subset,conjecture,
! [B,C,D] :
( ( subset(B,C)
& subset(D,C) )
=> subset(union(B,D),C) ) ).
%------------------------------------------------------------------------------