TPTP Problem File: SET012-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET012-4 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Set Theory
% Problem : Complement is an involution
% Version : [BL+86] axioms : Reduced > Incomplete.
% English :
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [ANL]
% Names : compl.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.10 v5.4.0, 0.05 v5.3.0, 0.06 v5.2.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.5.0, 0.18 v2.4.0, 0.12 v2.2.1, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 11 ( 4 unt; 3 nHn; 8 RR)
% Number of literals : 21 ( 6 equ; 9 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 14 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v1.2.1 - Missing substitution axioms added.
%--------------------------------------------------------------------------
%----Axiom A-2, elements of sets are little sets.
cnf(a2,axiom,
( ~ member(X,Y)
| little_set(X) ) ).
%----Axiom A-3, principle of extensionality
cnf(extensionality1,axiom,
( little_set(f1(X,Y))
| X = Y ) ).
cnf(extensionality2,axiom,
( member(f1(X,Y),X)
| member(f1(X,Y),Y)
| X = Y ) ).
cnf(extensionality3,axiom,
( ~ member(f1(X,Y),X)
| ~ member(f1(X,Y),Y)
| X = Y ) ).
%----Axiom B-3, complement
cnf(complement1,axiom,
( ~ member(Z,complement(X))
| ~ member(Z,X) ) ).
cnf(complement2,axiom,
( member(Z,complement(X))
| ~ little_set(Z)
| member(Z,X) ) ).
%----Definition of empty set
cnf(empty_set,axiom,
~ member(Z,empty_set) ).
%----Definition of universal set
cnf(universal_set,axiom,
( member(Z,universal_set)
| ~ little_set(Z) ) ).
cnf(complement_of_a_is_b,hypothesis,
complement(as) = bs ).
cnf(complement_of_b_is_c,hypothesis,
complement(bs) = cs ).
cnf(prove_a_equals_c,negated_conjecture,
as != cs ).
%--------------------------------------------------------------------------