TPTP Problem File: SET011-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET011-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Problem : X \ (X \ Y) = X ^ Y
% Version : [LS74] axioms.
% English : The difference of a first set and the set which is the
% difference of the first set and a second set, is the
% intersection of the two sets.
% Refs : [LS74] Lawrence & Starkey (1974), Experimental Tests of Resol
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : ls121 [LS74]
% : ls121 [WM76]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.14 v8.1.0, 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.25 v6.3.0, 0.00 v5.4.0, 0.10 v5.2.0, 0.00 v5.1.0, 0.09 v5.0.0, 0.07 v4.1.0, 0.12 v4.0.1, 0.00 v2.4.0, 0.00 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 21 ( 3 unt; 7 nHn; 17 RR)
% Number of literals : 57 ( 0 equ; 28 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-3 aty)
% Number of variables : 55 ( 4 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include the member and subset axioms
include('Axioms/SET001-0.ax').
%----Include the member and intersection axioms
include('Axioms/SET001-2.ax').
%----Include the member and difference axioms
include('Axioms/SET001-3.ax').
%--------------------------------------------------------------------------
cnf(a_minus_b,hypothesis,
difference(a,b,aDb) ).
cnf(a_minus_aDb,hypothesis,
difference(a,aDb,aD_aDb) ).
cnf(prove_a_intersection_b_is_aD_aDb,negated_conjecture,
~ intersection(a,b,aD_aDb) ).
%--------------------------------------------------------------------------