TPTP Problem File: SET009+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET009+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : If X is a subset of Y, then Z \ Y is a subset of Z \ X
% Version : [Try90] axioms : Reduced > Incomplete.
% English : If X is a subset of Y, then the difference of Z and Y is a
% subset of the difference of Z and X.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (47) [TS89]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.25 v5.5.0, 0.17 v5.4.0, 0.22 v5.3.0, 0.26 v5.2.0, 0.00 v4.0.1, 0.05 v3.7.0, 0.14 v3.5.0, 0.00 v3.1.0, 0.25 v2.7.0, 0.00 v2.2.1
% Syntax : Number of formulae : 4 ( 1 unt; 0 def)
% Number of atoms : 9 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 6 ( 1 ~; 0 |; 1 &)
% ( 2 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 10 ( 10 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(boole - th(47),1833437)
fof(prove_subset_difference,conjecture,
! [B,C,D] :
( subset(B,C)
=> subset(difference(D,C),difference(D,B)) ) ).
%--------------------------------------------------------------------------