TPTP Problem File: SET002^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET002^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Set Theory
% Problem : Idempotency of union
% Version : [Ben12] axioms.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-SET002+3 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0
% Syntax : Number of formulae : 93 ( 34 unt; 39 typ; 32 def)
% Number of atoms : 226 ( 36 equ; 0 cnn)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 348 ( 5 ~; 5 |; 9 &; 319 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 188 ( 188 >; 0 *; 0 +; 0 <<)
% Number of symbols : 48 ( 46 usr; 9 con; 0-3 aty)
% Number of variables : 134 ( 90 ^; 37 !; 7 ?; 134 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(subset_type,type,
subset: mu > mu > $i > $o ).
thf(member_type,type,
member: mu > mu > $i > $o ).
thf(union_type,type,
union: mu > mu > mu ).
thf(existence_of_union_ax,axiom,
! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( union @ V2 @ V1 ) @ V ) ).
thf(reflexivity,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( qmltpeq @ X @ X ) ) ) ).
thf(symmetry,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [Y: mu] : ( mimplies @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ X ) ) ) ) ) ).
thf(transitivity,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [Y: mu] :
( mforall_ind
@ ^ [Z: mu] : ( mimplies @ ( mand @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ Z ) ) @ ( qmltpeq @ X @ Z ) ) ) ) ) ) ).
thf(union_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( union @ A @ C ) @ ( union @ B @ C ) ) ) ) ) ) ) ).
thf(union_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( union @ C @ A ) @ ( union @ C @ B ) ) ) ) ) ) ) ).
thf(member_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( member @ A @ C ) ) @ ( member @ B @ C ) ) ) ) ) ) ).
thf(member_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( member @ C @ A ) ) @ ( member @ C @ B ) ) ) ) ) ) ).
thf(subset_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( subset @ A @ C ) ) @ ( subset @ B @ C ) ) ) ) ) ) ).
thf(subset_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( subset @ C @ A ) ) @ ( subset @ C @ B ) ) ) ) ) ) ).
thf(subset_union,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( subset @ B @ C ) @ ( qmltpeq @ ( union @ B @ C ) @ C ) ) ) ) ) ).
thf(union_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mforall_ind
@ ^ [D: mu] : ( mequiv @ ( member @ D @ ( union @ B @ C ) ) @ ( mor @ ( member @ D @ B ) @ ( member @ D @ C ) ) ) ) ) ) ) ).
thf(equal_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mequiv @ ( qmltpeq @ B @ C ) @ ( mand @ ( subset @ B @ C ) @ ( subset @ C @ B ) ) ) ) ) ) ).
thf(commutativity_of_union,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( qmltpeq @ ( union @ B @ C ) @ ( union @ C @ B ) ) ) ) ) ).
thf(subset_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mequiv @ ( subset @ B @ C )
@ ( mforall_ind
@ ^ [D: mu] : ( mimplies @ ( member @ D @ B ) @ ( member @ D @ C ) ) ) ) ) ) ) ).
thf(reflexivity_of_subset,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] : ( subset @ B @ B ) ) ) ).
thf(equal_member_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mequiv @ ( qmltpeq @ B @ C )
@ ( mforall_ind
@ ^ [D: mu] : ( mequiv @ ( member @ D @ B ) @ ( member @ D @ C ) ) ) ) ) ) ) ).
thf(prove_idempotency_of_union,conjecture,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] : ( qmltpeq @ ( union @ B @ B ) @ B ) ) ) ).
%------------------------------------------------------------------------------