TPTP Problem File: ROB030-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ROB030-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Robbins Algebra
% Problem : Exists absorbed element => Exists absorbed within negation element
% Version : [Win90] (equality) axioms.
% Theorem formulation : Denies Huntington's axiom.
% English : If there are elements c and d such that c+d=d, then the
% algebra is Boolean.
% Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% : [Loe04] Loechner (2004), Email to Geoff Sutcliffe
% Source : [Loe04]
% Names : (1) [Loe04]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.00 v6.0.0, 0.10 v5.5.0, 0.05 v5.4.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.13 v5.0.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v3.1.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%------------------------------------------------------------------------------
cnf(absorbtion,hypothesis,
add(c,d) = d ).
cnf(prove_absorption_within_negation,negated_conjecture,
negate(add(A,B)) != negate(B) ).
%------------------------------------------------------------------------------