TPTP Problem File: ROB025-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ROB025-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Robbins Algebra
% Problem : -(X + Y) = intersection(-X,-Y) => Boolean
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v7.3.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 1 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-4 aty)
% Number of variables : 26 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from ROB025-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(reflexivity,axiom,
equalish(X,X) = true ).
cnf(symmetry,axiom,
ifeq(equalish(X,Y),true,equalish(Y,X),true) = true ).
cnf(transitivity,axiom,
ifeq(equalish(Y,Z),true,ifeq(equalish(X,Y),true,equalish(X,Z),true),true) = true ).
cnf(add_substitution1,axiom,
ifeq(equalish(A,B),true,equalish(add(A,C),add(B,C)),true) = true ).
cnf(add_substitution2,axiom,
ifeq(equalish(D,E),true,equalish(add(F,D),add(F,E)),true) = true ).
cnf(inverse_substitution1,axiom,
ifeq(equalish(G,H),true,equalish(negate(G),negate(H)),true) = true ).
cnf(commutativity_of_add,axiom,
equalish(add(X,Y),add(Y,X)) = true ).
cnf(associativity_of_add,axiom,
equalish(add(add(X,Y),Z),add(X,add(Y,Z))) = true ).
cnf(robbins_axiom,axiom,
equalish(negate(add(negate(add(X,Y)),negate(add(X,negate(Y))))),X) = true ).
cnf(the_condition,hypothesis,
equalish(negate(add(X,Y)),intersect(negate(X),negate(Y))) = true ).
cnf(prove_huntingtons_axiom,negated_conjecture,
equalish(add(negate(add(a,negate(b))),negate(add(negate(a),negate(b)))),b) != true ).
%------------------------------------------------------------------------------