TPTP Problem File: ROB025-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB025-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Robbins Algebra
% Problem : -(X + Y) = intersection(-X,-Y) => Boolean
% Version : [Win90] (equality) axioms : Incomplete.
% English : If for all X and Y, -(X + Y) = intersection(-X,-Y) then the
% algebra is Boolean.
% Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to
% Source : [WW+90]
% Names : RA-2 [WW+90]
% Status : Unsatisfiable
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 11 ( 6 unt; 0 nHn; 4 RR)
% Number of literals : 17 ( 0 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 23 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : Commutativity, associativity, and Huntington's axiom
% axiomatize Boolean algebra.
% : Intersection is not defined, so this problem may be broken.
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
%include('Axioms/ROB001-0.ax').
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
equalish(X,X) ).
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
cnf(add_substitution1,axiom,
( ~ equalish(A,B)
| equalish(add(A,C),add(B,C)) ) ).
cnf(add_substitution2,axiom,
( ~ equalish(D,E)
| equalish(add(F,D),add(F,E)) ) ).
cnf(inverse_substitution1,axiom,
( ~ equalish(G,H)
| equalish(negate(G),negate(H)) ) ).
cnf(commutativity_of_add,axiom,
equalish(add(X,Y),add(Y,X)) ).
cnf(associativity_of_add,axiom,
equalish(add(add(X,Y),Z),add(X,add(Y,Z))) ).
cnf(robbins_axiom,axiom,
equalish(negate(add(negate(add(X,Y)),negate(add(X,negate(Y))))),X) ).
cnf(the_condition,hypothesis,
equalish(negate(add(X,Y)),intersect(negate(X),negate(Y))) ).
cnf(prove_huntingtons_axiom,negated_conjecture,
~ equalish(add(negate(add(a,negate(b))),negate(add(negate(a),negate(b)))),b) ).
%--------------------------------------------------------------------------