TPTP Problem File: ROB017-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB017-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Robbins Algebra
% Problem : If -(2f + h) = -(3f + h) = -h then 2f + h = 3f + h
% Version : [Win90] (equality) axioms.
% English : That is, 2f+h absorbs f.
% Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% Source : [Win90]
% Names : Lemma 3.8 [Win90]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 7 ( 6 unt; 0 nHn; 4 RR)
% Number of literals : 8 ( 8 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 0 sgn)
% SPC : CNF_UNK_RFO_PEQ_NUE
% Comments : This is formulated without the numbers, by adding.
% : The extra lemma is required for the proof.
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%--------------------------------------------------------------------------
cnf(condition1,hypothesis,
negate(add(f,add(f,h))) = negate(h) ).
cnf(condition2,hypothesis,
negate(add(f,add(f,add(f,h)))) = negate(h) ).
%----This is the necessary lemma
cnf(lemma_3_7,axiom,
( negate(add(X,negate(Y))) != negate(Y)
| negate(add(Y,add(X,negate(add(X,negate(Y)))))) = negate(Y) ) ).
cnf(prove_result,negated_conjecture,
add(f,add(f,add(f,h))) != add(f,add(f,h)) ).
%--------------------------------------------------------------------------