TPTP Problem File: ROB015-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB015-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Robbins Algebra
% Problem : If -(-e + -(d + -e)) = d then -(e + k(d + -(d + -e))) = -e
% Version : [Win90] (equality) axioms : Augmented.
% English : This is the induction step of an induction proof.
% Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% Source : [Win90]
% Names : Lemma 3.6 [Win90]
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.25 v8.2.0, 0.33 v8.1.0, 0.22 v7.5.0, 0.30 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.56 v5.5.0, 0.81 v5.4.0, 0.80 v5.3.0, 0.75 v5.2.0, 0.50 v5.1.0, 0.29 v4.1.0, 0.33 v4.0.1, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.4.0, 0.17 v3.3.0, 0.29 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.57 v2.5.0, 0.40 v2.4.0, 0.83 v2.3.0, 1.00 v2.2.1, 1.00 v2.0.0
% Syntax : Number of clauses : 13 ( 9 unt; 0 nHn; 8 RR)
% Number of literals : 18 ( 12 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 18 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The extra lemmas are suggested by [Win90].
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%----Include axioms for numbers in Robbins algebras
include('Axioms/ROB001-1.ax').
%--------------------------------------------------------------------------
%----These are the extra lemmas
cnf(lemma_3_2,axiom,
( negate(add(X,negate(add(Y,Z)))) != negate(add(Y,negate(add(X,Z))))
| X = Y ) ).
cnf(lemma_3_4,axiom,
( negate(add(X,negate(Y))) != Z
| ~ positive_integer(Vk)
| negate(add(X,negate(add(Y,multiply(Vk,add(X,Z)))))) = Z ) ).
%----Clauses for the theorem
cnf(condition,hypothesis,
negate(add(negate(e),negate(add(d,negate(e))))) = d ).
cnf(k_positive,axiom,
positive_integer(k) ).
cnf(base_step,axiom,
negate(add(e,multiply(k,add(d,negate(add(d,negate(e))))))) != negate(e) ).
cnf(prove_induction_step,negated_conjecture,
negate(add(e,multiply(successor(k),add(d,negate(add(d,negate(e))))))) != negate(e) ).
%--------------------------------------------------------------------------