TPTP Problem File: ROB012-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB012-2 : TPTP v9.0.0. Bugfixed v1.2.0.
% Domain : Robbins Algebra
% Problem : If -(a + -b) = c then -(a + -(b + k(a + c))) = c, k=k + 1
% Version : [Win90] (equality) axioms : Augmented.
% English : This is the induction step of an induction proof.
% Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% Source : [Win90]
% Names : Lemma 3.4 [Win90]
% Status : Satisfiable
% Rating : 0.56 v9.0.0, 0.50 v8.2.0, 0.70 v8.1.0, 0.62 v7.5.0, 0.67 v7.4.0, 0.64 v7.3.0, 0.67 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.38 v6.2.0, 0.50 v6.1.0, 0.67 v6.0.0, 0.71 v5.5.0, 0.75 v5.4.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.80 v5.0.0, 0.78 v4.1.0, 0.71 v4.0.1, 1.00 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.86 v2.5.0, 1.00 v2.0.0
% Syntax : Number of clauses : 12 ( 9 unt; 0 nHn; 7 RR)
% Number of literals : 15 ( 10 equ; 4 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-2 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : The extra lemma is used in [Win90]'s proof.
% Bugfixes : v1.2.0 - Fixed sign in prove_induction_step.
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%----Include axioms for numbers in Robbins algebras
include('Axioms/ROB001-1.ax').
%--------------------------------------------------------------------------
%----This is the extra lemma
cnf(lemma_3_3,axiom,
( negate(add(X,negate(Y))) != Z
| negate(add(Z,negate(add(Y,X)))) = X ) ).
cnf(condition,hypothesis,
negate(add(a,negate(b))) = c ).
cnf(k_an_integer,hypothesis,
positive_integer(k) ).
cnf(base_step,axiom,
negate(add(a,negate(add(b,multiply(k,add(a,c)))))) = c ).
cnf(prove_induction_step,negated_conjecture,
negate(add(a,negate(add(b,multiply(successor(k),add(a,c)))))) != c ).
%--------------------------------------------------------------------------