TPTP Problem File: ROB010-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB010-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Robbins Algebra
% Problem : If -(a + -b) = c then -(c + -(b + a)) = a
% Version : [Win90] (equality) axioms.
% English :
% Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% Source : [Win90]
% Names : Lemma 3.3 [Win90]
% : RA2 [LW92]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v6.0.0, 0.05 v5.5.0, 0.00 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%--------------------------------------------------------------------------
cnf(condition,hypothesis,
negate(add(a,negate(b))) = c ).
cnf(prove_result,negated_conjecture,
negate(add(c,negate(add(b,a)))) != a ).
%--------------------------------------------------------------------------