TPTP Problem File: ROB007-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB007-2 : TPTP v9.0.0. Bugfixed v3.1.0.
% Domain : Robbins Algebra
% Problem : Absorbed within negation element => Exists idempotent element
% Version : [Win90] (equality) axioms.
% English : If there exist a, b such that -(a+b) = -b, then the algebra
% is Boolean.
% Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras
% : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% Source : [Win90]
% Names : Theorem 1.2 [Win90]
% Status : Unknown
% Rating : 1.00 v3.1.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNK_RFO_PEQ_UEQ
% Comments : Commutativity, associativity, and Huntington's axiom
% axiomatize Boolean algebra.
% Bugfixes : v3.1.0 - Removed extra negated_conjecture clauses.
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%--------------------------------------------------------------------------
cnf(condition,hypothesis,
negate(add(a,b)) = negate(b) ).
cnf(prove_idempotence,negated_conjecture,
add(X,X) != X ).
%--------------------------------------------------------------------------