TPTP Problem File: ROB006-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB006-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Robbins Algebra
% Problem : c + d=d => Boolean
% Version : [Win90] (equality) axioms : Augmented.
% Theorem formulation : Denies Huntington's axiom.
% English : If there are elements c and d such that c+d=d, then the
% algebra is Boolean.
% Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras
% : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% : [Wos92] Wos (1992), An Opportunity to Test Your Skills, and th
% Source : [Wos92]
% Names : Theorem 1.1 [Win90]
% Status : Unsatisfiable
% Rating : 1.00 v7.5.0, 0.90 v7.4.0, 1.00 v7.3.0, 0.78 v7.2.0, 0.75 v7.1.0, 0.86 v7.0.0, 1.00 v5.4.0, 0.93 v5.3.0, 0.92 v5.2.0, 0.88 v5.1.0, 0.86 v4.1.0, 0.89 v4.0.1, 0.67 v4.0.0, 0.83 v3.4.0, 1.00 v3.3.0, 0.86 v3.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 13 ( 8 unt; 0 nHn; 8 RR)
% Number of literals : 19 ( 14 equ; 8 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-2 aty)
% Number of variables : 19 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : Commutativity, associativity, and Huntington's axiom
% axiomatize Boolean algebra.
% : The extra lemmas are suggested by Winker (1990).
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%----Include axioms for Robbins algebra numbers
include('Axioms/ROB001-1.ax').
%--------------------------------------------------------------------------
%----The following are extra lemmas
cnf(idempotence,axiom,
add(X,X) != X ).
cnf(corollary_3_7,axiom,
( negate(add(X,Y)) != negate(Y)
| ~ positive_integer(V2)
| negate(add(Y,multiply(V2,add(X,negate(add(X,negate(Y))))))) = negate(Y) ) ).
cnf(corollary_3_9_1,axiom,
( negate(add(X,negate(Y))) != negate(Y)
| add(Y,multiply(successor(successor(one)),add(X,negate(add(X,negate(Y)))))) = add(Y,multiply(successor(one),add(X,negate(add(X,negate(Y)))))) ) ).
cnf(corollary_3_9_2,axiom,
( negate(add(negate(Y),negate(add(X,negate(Y))))) != X
| add(Y,multiply(successor(successor(one)),add(X,negate(add(X,negate(Y)))))) = add(Y,multiply(successor(one),add(X,negate(add(X,negate(Y)))))) ) ).
%----Hypothesis of the theorem
cnf(absorbtion,hypothesis,
add(c,d) = d ).
cnf(prove_huntingtons_axiom,negated_conjecture,
add(negate(add(a,negate(b))),negate(add(negate(a),negate(b)))) != b ).
%--------------------------------------------------------------------------