TPTP Problem File: ROB002-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ROB002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Robbins Algebra
% Problem : --X = X => Boolean
% Version : [Win90] (equality) axioms.
% English : If --X = X then the algebra is Boolean.
% Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras
% : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
% Source : [Win90]
% Names : Lemma 2.1 [Win90]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.13 v5.0.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Commutativity, associativity, and Huntington's axiom
% axiomatize Boolean algebra.
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%--------------------------------------------------------------------------
cnf(double_negation,hypothesis,
negate(negate(X)) = X ).
cnf(prove_huntingtons_axiom,negated_conjecture,
add(negate(add(a,negate(b))),negate(add(negate(a),negate(b)))) != b ).
%--------------------------------------------------------------------------