TPTP Problem File: RNG128-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RNG128-1 : TPTP v9.0.0. Released v5.4.0.
% Domain : Ring Theory
% Problem : In commutative semirings with 1+x+x^2=x, the operations coincide
% Version : Especial
% English :
% Refs : [Sta11] Stanovsky (2011), Email to Geoff Sutcliffe
% Source : [Sta11]
% Names : rng1 [Sta11]
% Status : Unsatisfiable
% Rating : 0.00 v7.5.0, 0.04 v7.4.0, 0.13 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.05 v6.4.0, 0.11 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.12 v6.0.0, 0.24 v5.5.0, 0.26 v5.4.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(sos,axiom,
add(A,add(B,C)) = add(add(A,B),C) ).
cnf(sos_001,axiom,
add(A,B) = add(B,A) ).
cnf(sos_002,axiom,
mult(A,B) = mult(B,A) ).
cnf(sos_003,axiom,
mult(A,add(B,C)) = add(mult(A,B),mult(A,C)) ).
cnf(sos_004,axiom,
add(zero,A) = A ).
cnf(sos_005,axiom,
mult(A,unit) = A ).
cnf(sos_006,axiom,
add(unit,add(A,mult(A,A))) = A ).
cnf(goals,negated_conjecture,
add(x0,x1) != mult(x0,x1) ).
%------------------------------------------------------------------------------