TPTP Problem File: RNG127+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RNG127+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Ring Theory
% Problem : Proper integral domains
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (208), Email to Geoff Sutcliffe
% Source : [Sta09]
% Names :
% Status : Satisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 10 ( 8 unt; 0 def)
% Number of atoms : 13 ( 13 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 5 ( 2 ~; 1 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 20 ( 19 !; 1 ?)
% SPC : FOF_SAT_RFO_PEQ
% Comments : Finitely unsatisfiable: this is the well known fact that finite
% integral domains are fields
%------------------------------------------------------------------------------
fof(f01,axiom,
! [A] : add(A,m(A)) = n ).
fof(f02,axiom,
! [A] : add(A,n) = A ).
fof(f03,axiom,
! [A,B,C] : add(A,add(B,C)) = add(add(A,B),C) ).
fof(f04,axiom,
! [A,B] : add(A,B) = add(B,A) ).
fof(f05,axiom,
! [A] : mult(A,e) = A ).
fof(f06,axiom,
! [A,B,C] : mult(A,mult(B,C)) = mult(mult(A,B),C) ).
fof(f07,axiom,
! [A,B] : mult(A,B) = mult(B,A) ).
fof(f08,axiom,
! [A,B,C] : mult(A,add(B,C)) = add(mult(A,B),mult(A,C)) ).
fof(f09,axiom,
! [A,B] :
( mult(A,B) = n
=> ( A = n
| B = n ) ) ).
fof(f10,axiom,
? [A] :
! [B] :
( A != n
& mult(A,B) != e ) ).
%------------------------------------------------------------------------------