TPTP Problem File: RNG082+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RNG082+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Ring Theory
% Problem : Chinese remainder theorem in a ring 01, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : chines_01.00 [Pas08]
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.42 v8.1.0, 0.36 v7.5.0, 0.41 v7.4.0, 0.37 v7.3.0, 0.34 v7.2.0, 0.38 v7.1.0, 0.35 v7.0.0, 0.47 v6.4.0, 0.50 v6.3.0, 0.42 v6.2.0, 0.44 v6.1.0, 0.50 v6.0.0, 0.43 v5.5.0, 0.52 v5.4.0, 0.61 v5.3.0, 0.63 v5.2.0, 0.55 v5.1.0, 0.67 v5.0.0, 0.71 v4.1.0, 0.74 v4.0.1, 0.96 v4.0.0
% Syntax : Number of formulae : 16 ( 4 unt; 0 def)
% Number of atoms : 42 ( 13 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 26 ( 0 ~; 0 |; 14 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 1 usr; 1 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 22 ( 22 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mElmSort,axiom,
! [W0] :
( aElement0(W0)
=> $true ) ).
fof(mSortsC,axiom,
aElement0(sz00) ).
fof(mSortsC_01,axiom,
aElement0(sz10) ).
fof(mSortsU,axiom,
! [W0] :
( aElement0(W0)
=> aElement0(smndt0(W0)) ) ).
fof(mSortsB,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> aElement0(sdtpldt0(W0,W1)) ) ).
fof(mSortsB_02,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> aElement0(sdtasdt0(W0,W1)) ) ).
fof(mAddComm,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> sdtpldt0(W0,W1) = sdtpldt0(W1,W0) ) ).
fof(mAddAsso,axiom,
! [W0,W1,W2] :
( ( aElement0(W0)
& aElement0(W1)
& aElement0(W2) )
=> sdtpldt0(sdtpldt0(W0,W1),W2) = sdtpldt0(W0,sdtpldt0(W1,W2)) ) ).
fof(mAddZero,axiom,
! [W0] :
( aElement0(W0)
=> ( sdtpldt0(W0,sz00) = W0
& W0 = sdtpldt0(sz00,W0) ) ) ).
fof(mAddInvr,axiom,
! [W0] :
( aElement0(W0)
=> ( sdtpldt0(W0,smndt0(W0)) = sz00
& sz00 = sdtpldt0(smndt0(W0),W0) ) ) ).
fof(mMulComm,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> sdtasdt0(W0,W1) = sdtasdt0(W1,W0) ) ).
fof(mMulAsso,axiom,
! [W0,W1,W2] :
( ( aElement0(W0)
& aElement0(W1)
& aElement0(W2) )
=> sdtasdt0(sdtasdt0(W0,W1),W2) = sdtasdt0(W0,sdtasdt0(W1,W2)) ) ).
fof(mMulUnit,axiom,
! [W0] :
( aElement0(W0)
=> ( sdtasdt0(W0,sz10) = W0
& W0 = sdtasdt0(sz10,W0) ) ) ).
fof(mAMDistr,axiom,
! [W0,W1,W2] :
( ( aElement0(W0)
& aElement0(W1)
& aElement0(W2) )
=> ( sdtasdt0(W0,sdtpldt0(W1,W2)) = sdtpldt0(sdtasdt0(W0,W1),sdtasdt0(W0,W2))
& sdtasdt0(sdtpldt0(W1,W2),W0) = sdtpldt0(sdtasdt0(W1,W0),sdtasdt0(W2,W0)) ) ) ).
fof(m__444,hypothesis,
aElement0(xx) ).
fof(m__,conjecture,
sdtasdt0(smndt0(sz10),xx) = smndt0(xx) ).
%------------------------------------------------------------------------------