TPTP Problem File: RNG044+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RNG044+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Ring Theory
% Problem : Cauchy-Bouniakowsky-Schwarz inequality 01, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : cauchy_01.00 [Pas08]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.2.0, 0.36 v8.1.0, 0.42 v7.5.0, 0.44 v7.4.0, 0.33 v7.3.0, 0.34 v7.1.0, 0.39 v7.0.0, 0.47 v6.4.0, 0.42 v6.2.0, 0.40 v6.1.0, 0.53 v6.0.0, 0.43 v5.5.0, 0.56 v5.4.0, 0.61 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.62 v5.0.0, 0.67 v4.1.0, 0.65 v4.0.1, 0.87 v4.0.0
% Syntax : Number of formulae : 17 ( 3 unt; 0 def)
% Number of atoms : 57 ( 20 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 42 ( 2 ~; 0 |; 25 &)
% ( 0 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 22 ( 21 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mNatSort,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> $true ) ).
fof(mZeroNat,axiom,
aNaturalNumber0(sz00) ).
fof(mSuccNat,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> ( aNaturalNumber0(szszuzczcdt0(W0))
& szszuzczcdt0(W0) != sz00 ) ) ).
fof(mNatExtr,axiom,
! [W0] :
( ( aNaturalNumber0(W0)
& W0 != sz00 )
=> ? [W1] :
( aNaturalNumber0(W1)
& W0 = szszuzczcdt0(W1) ) ) ).
fof(mSuccEqu,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( szszuzczcdt0(W0) = szszuzczcdt0(W1)
=> W0 = W1 ) ) ).
fof(mIHOrd,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( iLess0(W0,W1)
=> $true ) ) ).
fof(mIH,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> iLess0(W0,szszuzczcdt0(W0)) ) ).
fof(mScSort,axiom,
! [W0] :
( aScalar0(W0)
=> $true ) ).
fof(mSZeroSc,axiom,
aScalar0(sz0z00) ).
fof(mSumSc,axiom,
! [W0,W1] :
( ( aScalar0(W0)
& aScalar0(W1) )
=> aScalar0(sdtpldt0(W0,W1)) ) ).
fof(mMulSc,axiom,
! [W0,W1] :
( ( aScalar0(W0)
& aScalar0(W1) )
=> aScalar0(sdtasdt0(W0,W1)) ) ).
fof(mNegSc,axiom,
! [W0] :
( aScalar0(W0)
=> aScalar0(smndt0(W0)) ) ).
fof(mScZero,axiom,
! [W0] :
( aScalar0(W0)
=> ( sdtpldt0(W0,sz0z00) = W0
& sdtpldt0(sz0z00,W0) = W0
& sdtasdt0(W0,sz0z00) = sz0z00
& sdtasdt0(sz0z00,W0) = sz0z00
& sdtpldt0(W0,smndt0(W0)) = sz0z00
& sdtpldt0(smndt0(W0),W0) = sz0z00
& smndt0(smndt0(W0)) = W0
& smndt0(sz0z00) = sz0z00 ) ) ).
fof(mArith,axiom,
! [W0,W1,W2] :
( ( aScalar0(W0)
& aScalar0(W1)
& aScalar0(W2) )
=> ( sdtpldt0(sdtpldt0(W0,W1),W2) = sdtpldt0(W0,sdtpldt0(W1,W2))
& sdtpldt0(W0,W1) = sdtpldt0(W1,W0)
& sdtasdt0(sdtasdt0(W0,W1),W2) = sdtasdt0(W0,sdtasdt0(W1,W2))
& sdtasdt0(W0,W1) = sdtasdt0(W1,W0) ) ) ).
fof(mDistr,axiom,
! [W0,W1,W2] :
( ( aScalar0(W0)
& aScalar0(W1)
& aScalar0(W2) )
=> ( sdtasdt0(W0,sdtpldt0(W1,W2)) = sdtpldt0(sdtasdt0(W0,W1),sdtasdt0(W0,W2))
& sdtasdt0(sdtpldt0(W0,W1),W2) = sdtpldt0(sdtasdt0(W0,W2),sdtasdt0(W1,W2)) ) ) ).
fof(m__674,hypothesis,
( aScalar0(xx)
& aScalar0(xy)
& aScalar0(xu)
& aScalar0(xv) ) ).
fof(m__,conjecture,
sdtasdt0(sdtpldt0(xx,xy),sdtpldt0(xu,xv)) = sdtpldt0(sdtpldt0(sdtasdt0(xx,xu),sdtasdt0(xx,xv)),sdtpldt0(sdtasdt0(xy,xu),sdtasdt0(xy,xv))) ).
%------------------------------------------------------------------------------